Cure your screening problems with the drug-like additives in Morpheus III.

Exclusively from Molecular Dimensions, the new Morpheus® III screen uniquely contains a range of small, drug-like compounds to aid protein stabilisation and crystallisation.

- Increases the chances of a hit by expanding the amount of chemical space screened with drug-like additives, including phytochemicals, antibiotics, cholic acid derivatives and vitamins.
- Unique to Morpheus III, these compounds aid crystallisation, as they can be protein-stabilising and are often found in structures in the PDB.
- Hits can be easily optimised with the Hippocrates additive screen which contains all 44 drug-like compounds used in Morpheus III.
- Morpheus III is not biased towards particular macromolecules or reagents as it was designed de novo and optimised against a broad range of protein samples.
- Developed by Dr Fabrice Gorrec of the MRC-LMB, Cambridge, UK, the creator of a range of popular and novel screens including Morpheus and the LMB Crystallisation screen, all of which have successfully crystallised a number of challenging targets.

Dr Fabrice Gorrec of MRC-LMB, Cambridge, UK developed the popular Morpheus and Morpheus II screens, which have been proven to be very efficient at crystallising a broad variety of protein samples. Just as with those screens, Morpheus III was designed from scratch and optimised against a broad range of protein samples to avoid bias.

References

The Morpheus III screen and Hippocrates additive screen were developed at the MRC-LMB, Cambridge, UK and exclusively licensed to Molecular Dimensions by LifeARC.

Ordering Information

<table>
<thead>
<tr>
<th>Pack Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD1-116</td>
<td>96 x 10 mL</td>
</tr>
<tr>
<td>MD1-117</td>
<td>96 x 1 mL</td>
</tr>
<tr>
<td>MD1-118</td>
<td>48 x 100 µL</td>
</tr>
</tbody>
</table>

Crystals of human USB 1 (2H phosphoesterase) obtained with Morpheus III. With kind permission of Dr Christine Hilcenko (University of Cambridge, UK).
Maximise your screening potential with the Morpheus® screen family

Rational screens designed *de novo* and optimised against a range of protein samples to avoid bias by Dr Fabrice Gorrec of the MRC-LMB, Cambridge UK.

The Morpheus® screen
Ever popular screen that accesses novel chemical space with a range of low molecular weight compounds that are frequently occurring ordered ligands in the PDB.

The Morpheus II screen
This second Morpheus screen includes reagents not usually found in initial screens to expand crystallisation space.

The Morpheus Additive screen
All the reagents employed in the formulations of Morpheus and Morpheus II (including the PDB-derived ligands) as an additive screen to enhance protein stability and solubility.

References

All screens were developed at the MRC-LMB, Cambridge, UK and exclusively licensed to Molecular Dimensions by LifeARC.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Pack Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD1-46</td>
<td>96 x 10 mL Morphheus</td>
</tr>
<tr>
<td>MD1-47</td>
<td>96 x 1 mL Morpheus HT-96</td>
</tr>
<tr>
<td>MD1-91</td>
<td>96 x 10 mL Morpheus II</td>
</tr>
<tr>
<td>MD1-92</td>
<td>96 x 1 mL Morpheus II HT-96</td>
</tr>
<tr>
<td>MD1-93</td>
<td>96 x 100 µL Morpheus Additive screen</td>
</tr>
<tr>
<td>MD1-98</td>
<td>96 x 10 mL The LMB Crystallisation screen</td>
</tr>
<tr>
<td>MD1-99</td>
<td>96 x 1 mL The LMB Crystallisation screen HT-96</td>
</tr>
<tr>
<td>MD1-100</td>
<td>96 x 1 mL The ANGSTROM Additive screen</td>
</tr>
</tbody>
</table>

A complex of endocytic proteins grown in condition B6 of the LMB Crystallisation screen. Thanks to Dr L. Almeida-Souza.

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
</table>

Polyols are great optimisation reagents as they can mediate protein-protein interactions via multiple hydroxyl groups. As well as enhancing protein and lattice stability, every polyol supplied has cryoprotectant properties.

Some of the polyols included in the Angstrom Additive screen.